DRIVING INNOVATION WITH AUTOMOTIVE ALUMINUM

DOUG RICHMAN

Technical Committee Chairman THE ALUMINUM ASSOCIATION'S ALUMINUM TRANSPORTATION GROUP

> Vice President, Engineering/Technology KAISER ALUMINUM

ALUMINUM TRANSPORTATION GROUP (ATG)

DRIVEALUMINUM.ORG

DISCUSSION OUTLINE

- Why Automotive Aluminum?
- 50 Years of Growth
- Aluminum Materials
- Advances in Automotive Aluminu
- Corrosion
- Repair Industry Issues

THE ALUMINUM ADVANTAGE

ALUMINUM ADVANTAGES

What Automotive Customers Need...

- Weight Reduction

 (Multi-Material Vehicles)
 - Fuel Economy/CO2 (CAFE)
 - Performance:

Safety, 0-60, handling, ride, NVH, braking, etc.

Payload, towing capacity

Cost Effective

- Aluminum Products
 - **Body Sheet**
 - Extrusions
 - Structural castings
- Properties
 - Strong
 - Tough
 - Energy absorbing
 - Corrosion resistant
 - Formable

ALUMINUM AUTO BODY SHEET AND EXTRUSIONS

- 1.0 lb. of aluminum replaces
 - 1.7 lbs. of MS/HS/AHSS
 - Body: 40% mass (BIW, Closures)
 - Curb mass: -12%
 - Jaguar, F-150, Aachen, FEV/EDAG ...
- Secondary mass reductions
 - Up to 0.5 lbs.
- 10% vehicle mass reduction "achievable"
 - 6.5% FE improvement (+ 2.7 MPG)

- Cost advantage over other fuel economy technologies
 - Diesel, hybrid, electric, ...

THE VIRTUOUS CYCLE

50 YEARS OF GROWTH

2015 DUCKER WORLDWIDE AUTOMAKER SURVEY

- 40 year growth trend continues
- Highest growth = 2015
 - First high-volume automotive body and structures –
 F-150 pickup truck all-aluminum body
 - Sheet and extrusions body, closures
- Continued growth
 - Non-body applications: castings and extrusions

50 YEARS OF ALUMINUM GROWTH

Source: Ducker

50 YEARS OF ALUMINUM GROWTH

AUTOMOTIVE MATERIAL MIX SHIFT - LIGHTER

2015

2025

DRIVEALUMINUM.ORG

ALUMINUM BODY COMPONENTS

ALUMINUM-INTENSIVE VEHICLES TODAY

ALUMINUM DRIVES CREATION OF NEW SEGMENT: ULTRA-LUXURY SUV

Bentley Bentayga

Maserati Levante

Lamborghini Urus

Rolls Royce Cullinan

MULTI-MATERIAL VEHICLES: THE NEW NORMAL

2016 Chevrolet Malibu

ALUMINUM REPAIR - MARKET GROWTH

AUTOMOTIVE ALUMINUM MATERIALS

ALUMINUM AUTO BODY MATERIALS

- All aluminum materials are <u>NOT</u> the same
 Can not easily identify specific material in the field Repair practices varies by material
- Automotive alloy selection
 - Strength Ductility Corrosion resistance Cost (material, processing) Energy absorption

ALUMINUM AUTO BODY MATERIALS

Different Automotive Aluminum Materials

Product form

sheet, extrusion, casting

Alloys

composition, mechanical properties, strengthening process

Tempers (strengthening)

mechanical properties, formability

Heat Treatable: Typically: body exterior, loaded structure
F, T4, T4PB,: High Formability
T6: Maximum Strength (+50% over T4 Typ.)
Non-heat treatable: Typically: under-body structure
HXX Work hardening

ALUMINUM AUTO MATERIALS – PRE-TREATMENT

Pretreatment – Sheet, Extrusions

Function – alter natural oxide layer

Chemically

Physically

Purpose - enhance

Adhesive bonding

Paint adhesion

Corrosion resistance

Types

Anodize Alodine

Alcoa 951

....

ALUMINUM AUTO BODY MATERIALS

Exterior Body Sheet (class "A" surface)

Requirements

Stiffness, Formability, Surface Quality, Dent Resistance, Corrosion Resistance

Product Attributes

```
Alloys

6005, 6009, 6010, 6013, 6016, 6022, 6111, 6451, (7XXX)

Tempers

T4 or T4 PB Typ.

Strength

T4: 185 – 250 MPa UTS (elongation 20-25 %)

Gauge

0.8 – 1.4 mm Typ.

Forming

T4 temper

Some aged to T6 after forming
```


ALUMINUM AUTO BODY MATERIALS

- Body Structure (non class "A" surface)
 - Sheet, Extrusions, Castings
 - Requirements

Strength, stiffness, energy absorption

Alloys

Sheet – 5182, 5454, 5754, 7XXX, ... (Cold worked in forming) Extrusion - 6005, 6061, 6063, 6082, 7003, 7043, (T6 Typ.) Casting – 380, 356, 357, (T6 Typ.)

ADVANCES IN AUTOMOTIVE ALUMINUM

ADVANCED ALLOYS MEET AUTOMOTIVE NEEDS

Continuous Product Improvement

- High Strength
- Energy Absorption
- Advanced Formability
- Value
- Sustainability

Graphic: Alcoa R&D

HIGH STRENGTH ALUMINUM GRADES

"High Strength" Alloy/Temper Variants

Applications – body structure, bumper

Sheet:

Variants: 6022, 6111, 6451, 7021

UTS: 400 + MPa

Extrusions:

Variants: 6082, 7003, 7046

UTS: 400+ MPa

ALUMINUM ENERGY ABSORPTION

"Crush Grade" Alloy/Temper Variants

Excellent energy absorption

Applications – body structure, bumper, frame rails, crash cans

Sheet:

Variants: 6022, 5454, 5754

UTS: 300 + MPa

Extrusions:

Variants: 6005, 6061, 6082, 7046

UTS: 300 + MPa

Aluminum: Highest energy absorption automotive material, pound for pound

Sheet:

Extrusions:

ENHANCED FORMABILITY ALUMINUM ALLOYS

"Formability" Alloy/Temper Variants

- Excellent: deep draw, hydroforming, hemming
- Applications body structure, exterior panels, door inner
- **Sheet (exterior):**
 - Variants: 6111,6022,6XXX,....
 - UTS: 250 365 MPa
- Sheet (structural)

Variants: 6022,6111,6XXX,5182,5454

UTS 250 – 575 MPa

- **Extrusions:**
 - Variants: 6061, 6082
 - UTS 300 350 MPa

BODY SHEET GAME CHANGER: ALCOA MICRO-MILL TECHNOLOGY

Alcoa Micromill™ Simplified auto sheet flow-path 20 minute process time Small foot-print Alcoa Micromill[™] Technology: 30 percent greater strength 40 percent greater formability 6xxx alloy Class A surface quality 5xxx and 6xxx alloys components

Micromill™ process description and advantages over conventional technology

BREAKTHROUGH: GM ALUMINUM WELDING

GM's new resistance spot welding process, using a proprietary multi-ring domed electrode, will enable more use of lightweight aluminum, which can help boost fuel economy.

Source: General Motors

COST / EFFICIENCY IMPROVEMENT

ENVIRONMENTAL STEWARDSHIP

North American (U.S. Canada) Primary Aluminum Production:

NAFTA PRIMARY ALUMINUM: LONG TERM TREND

CO2 Generation* Coal – 20 lb./lb.Al Hydro – 5 lb./lb.Al

* Includes: mining, refining, transportation

DRIVEALUMINUM.ORG

ALUMINUM AUTO BODY AND CORROSION

AUTO ALLOYS - CORROSION RESISTANT

Aluminum Automotive Alloys

Excellent Corrosion Resistance (5XXX, 6XXX)

Natural Oxide Film

Cosmetic Corrosion – Certain conditions

Galvanic corrosion Crevice corrosion

Filiform corrosion

Preventive Measures

Known and practical

ALUMINUM – NATURAL CORROSION RESISTANCE

- Natural Oxide Film (The Key Attribute)
 - Forms instantaneously

increasing thickness over time

Transparent

Tenacious

Hard

Chemically stable in "normal" environments (pH 4.5-8.0)

exposed raw metal does not corrode

engine, transmission, suspension

 Corrosion can Occur if Damaged

> Scratch Stone chip Mechanical abrasion Sanding, Grinding Chemical attack (Ph: <4, >8)

Corrosion Typically
 <u>Cosmetic</u>

Un-painted - White powder on surface

GALVANIC CORROSION - ALUMINUM

Galvanic Corrosion - Conditions

Dis-similar Metals (or Materials)

and

Electrical Contact

and

Electrolyte (NaCl)

- Corrosion Rate typically "very slow"
- Prevention

Protective coatings

fasteners – common coatings

- sheet or extrusion
- Seal interface crevice (exclude electrolyte)

CREVICE CORROSION - ALUMINUM

Crevice Corrosion

Chemical action between surfaces

Required conditions

Crevice - fraying surfaces

and

Electrolyte (NaCl)

Locations

lap joints

spot welded joints

or, surface mud accumulation

(similar to steel, less aggressive in aluminum)

Prevention

- **Protective coatings**
 - sheet or extrusion

Seal interface crevice – exclude electrolyte

Flexible sealer

H₂O + NaCI

304 Stainless Steel Bolt (Passivated)

FILIFORM CORROSION – ALUMINUM

Filiform Corrosion (Form of crevice corrosion)

Chemical attack under coatings

Required conditions

Damaged coating (scratches, stone chips, <u>sheet edges</u>) and

<u>Electrolyte intrusion (NaCl)</u> (similar to steel, less aggressive in aluminum)

Corrosion Rate

Accelerated by surface marks from grinding, sanding

Prevention (or Mitigation)

Surface - Alloy selection (mitigation) Surface conversion treatments Coating durability Edge - Seal crevices

FILIFORM CORROSION – GRINDING, SANDING

Aluminum 6111 T4: Summary of On-Vehicle Results Steel: Average Normalized Corrosion Area (mm² 4000 Detroit 2 yrs E60 Montreal 2 yrs 3500 OH/NY 2yrs St. Johns 4 yrs 3000 Detroit 5 yrs 2500 Mill Finish Sanded CRS 2000 1500 1000 15 3 500 Laboratory Test: ASTM G85-A2 (Acidified Salt Fog) 5% NaCl Mill Finish 6111 T4: Sanded Steel: E60 CRS Ph 2.8-3.0 acetic acid 120 F. Impact: grinding, sanding, factory coatings 500 Hrs. (6 Hr. cycle) :45 - spray

2:00 – dry 3:15 - soak

COLLISION REPAIR

ALUMINUM AUTOMOTIVE BODY REPAIR

Aluminum Repair Considerations

- Shop Safety
 Dust Management (Combustion)
- Corrosion
- I-CAR / Aluminum Association Joint Studies Industry open issues / concerns Information Develop "Best Practices" Bulletins

ALUMINUM DUST MANAGEMENT

Fines

- Dust or powder
- Grinding, sanding, polishing
- Can be combustible when:
 - Small particles < 500 micron</p>
 - Suspended in air
 - Concentration
 - Ignition source
 - Incidences are rare

Re: Nat Fire Protection Assoc. Std. No. 484

- Control
 - Dust collection system
 - Electrically grounded
 - Spark resistant
 - No smoking

SUMMARY

SUMMARY

Multi-material vehicle designs – the new norm
 Aluminum and steel – <u>Co-exist</u>, important auto materials

 Aluminum 2025 - OEM production Closures - 24 % by 2025 Body - 12 % by 2025

 Repair is similar to steel, but different Training – OEM, I-Car, ...
 Equipment Many different aluminum grades
 OEM repair procedures should be followed

✓ Keep Shops SAFE!
 <u>No</u> Dust incidences

QUESTIONS?

