

Trends in Automotive - Aluminum

Doug Richman

The Aluminum Association's Transportation Group (ATG)

OPC Meeting

July 16, 2013 Ann Arbor, MI

Aluminum Transportation Group (ATG)

Discussion Outline

Changing Vehicle Make-up Demand Drivers

Why Are We Here?

Aluminum - long term automotive growth

Automakers to double use of aluminum by 2025

Mass reduction is key to improving vehicle fuel economy.

Why Light Weighting? / Role of Aluminum

Studies | Mass Reduction (Materials Perspective) FEV/EDAG Venza – MMV EDAG Venza – AIV

Outside Processor Opportunities - Aluminum

Q & A

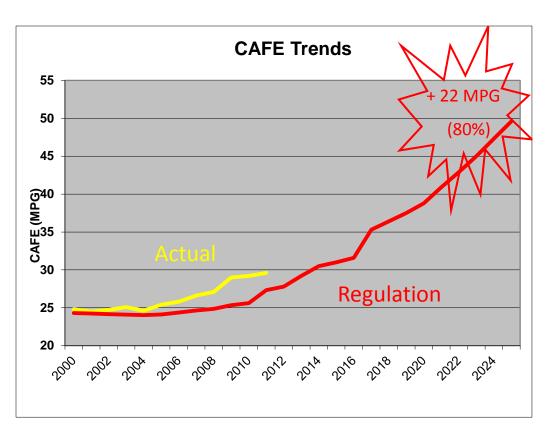
Mass Reduction | Part of the Solution

VALUE PROPOSITION (Varied by OEM and platform)

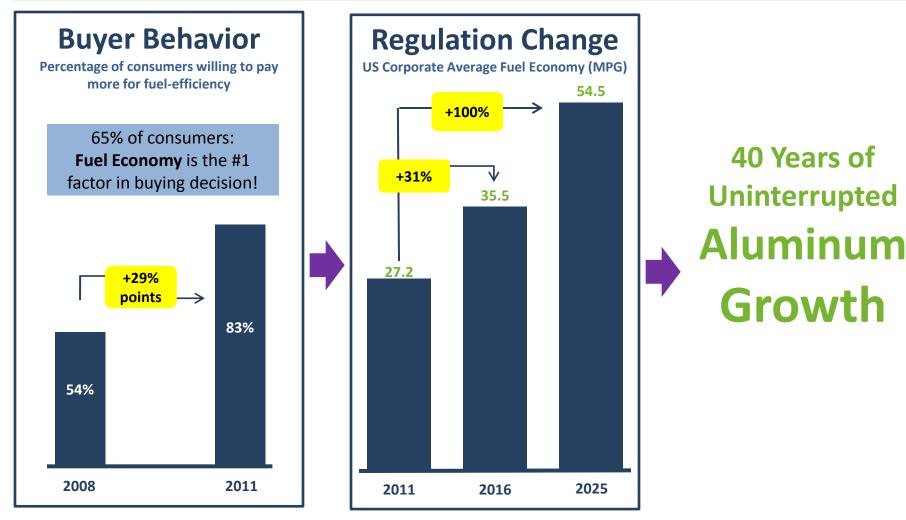
• Fuel Economy

Consumer demand CAFE

- Mass reduction vs. acceleration (powertrain selection)
- Weight balance (50/50 or C of G or Yaw moment)
- Inertia class
- Enabling of low stored energy, or hybrid vehicles


Mass Reduction | Part of the Solution

CAFE 2017-25 Regulation


54.5 MPGe (equivalent) credits (7 – 9 MPG) 47 MPG (pre-credits)

Weight reduction assumption overcame safety concerns 400 Lbs. avg. (10-20%) achieves 2-3 MPG gain

Maintained "Footprint " basis

Consumers Driving Improvements

Sources: Consumer Reports, Ducker Worldwide 2011, Aluminum Association, Alcoa analysis

A DRIVEALUMINUM

Weight Reduction = **Fuel Economy**

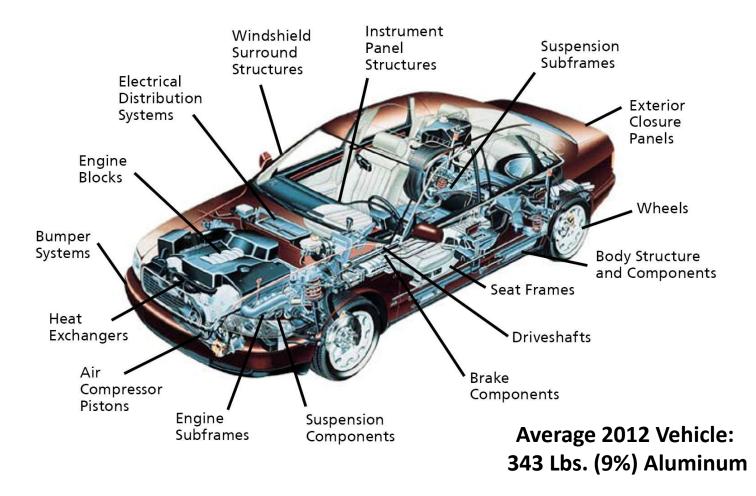
	Fuel Economy Improvement / 10% Weight Reduction (EPA Combined Drive Cycle)			
	Passenger Vehicle		Truck	
	Base Engine	Downsized Engine	Base Engine	Downsized Engine
Gasoline	3.3 %	6.5 %	3.5 %	4.7 %
Diesel	3.9 %	6.3%	3.6 %	4.7 %
PEV	6.3 % *		5.7 % *	
PHEV	6.3 % *		5.7 % *	

* - Power consumption

Automotive Mass Reduction Facts (Independent of Material Choice)

- Achieving 2025 objectives will take <u>all</u> available technologies
 - Powertrain
 - Mass
 - Aero
 - Rolling resistance
- Mass reduction <u>additive</u> to other FE improvements
 - Including: Diesel, Hybrid, Electric, Aero, Tires...
- **10%** vehicle mass reduction = **6.5%** fuel economy improvement
- Significant gains achievable (+ 1.5 5.0 MPG @ 45 MPG)
- OEM's: "Mass reduction <u>critical</u> to achieving 2025 objectives"

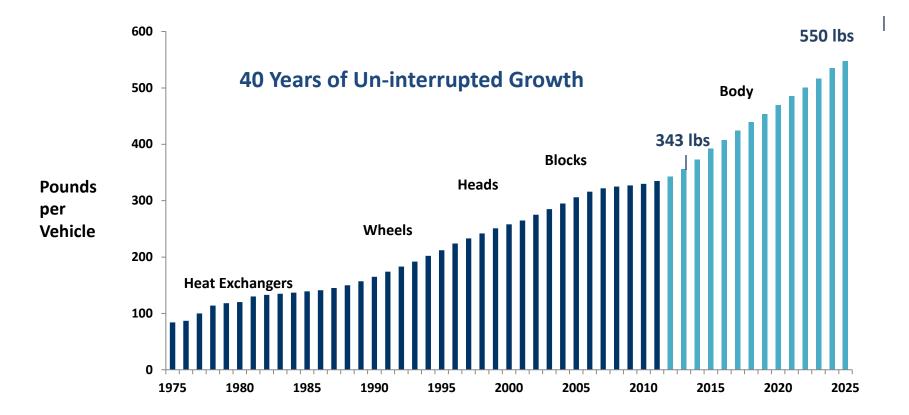
TRANSPORTATION CONSTRUCTION INDUSTRIAL MATERIALS FINANCIAL


DUCKER WORLDWIDE

Aluminum Association Aluminum in 2012 North American Light Vehicles

Executive Summary

August 18, 2011


Automotive Aluminum Today

Source: Ducker Worldwide 2011

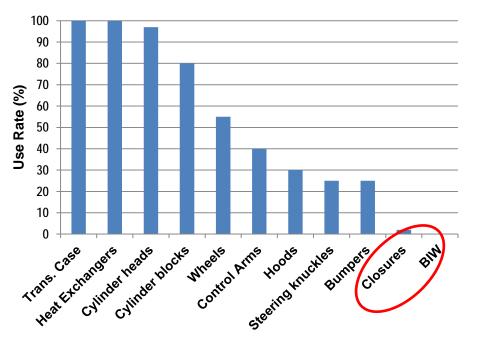
Aluminum Use in Vehicles Accelerating

Source: Ducker Worldwide 2011

Nearly 90% of aluminum content is in these four components -

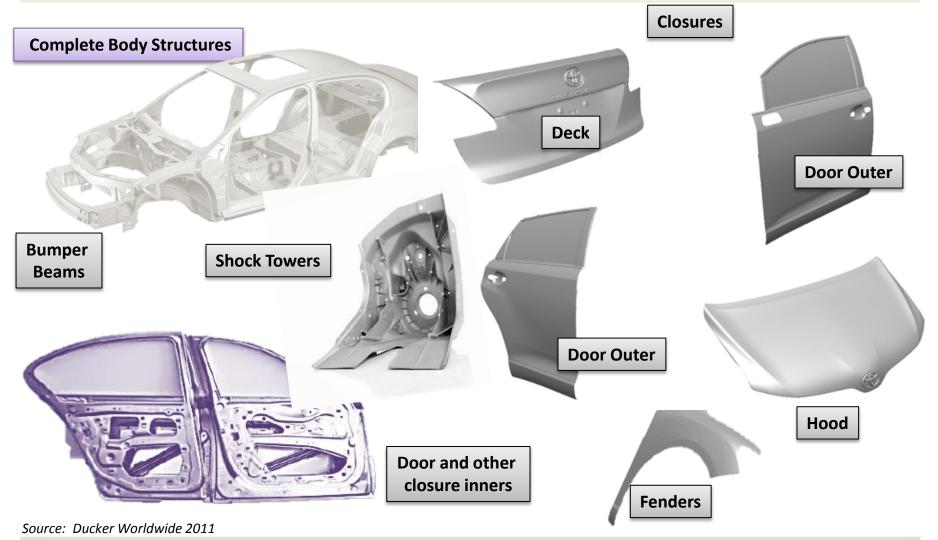
Source: Ducker Worldwide 2011

Body - Largest Remaining Mass Reduction Opportunity

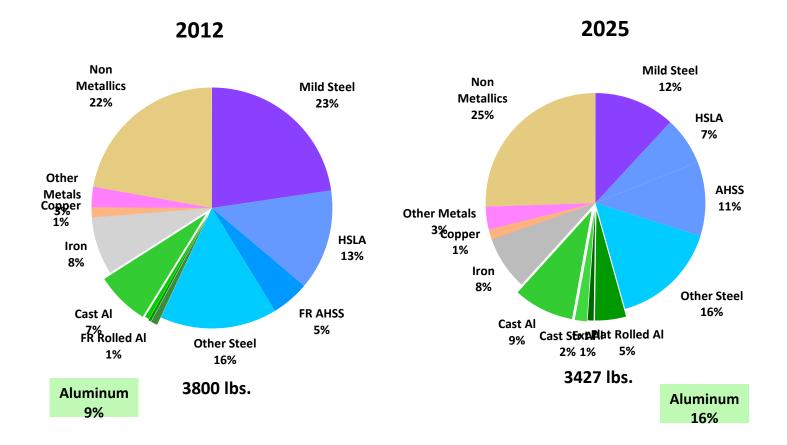

Aluminum penetration continues

•Potential future mass savings with steel are diminishing

Advanced steels


•Aluminum is the logical next step

•Al Closures, Steel BIW •Al Closures, Steel/Aluminum BIW •Al Closures, Aluminum/Steel BIW



Source: Ducker)

By 2017 over 20% of aluminum content – Body, bumper and closure components

Automotive Material Distribution – 2012:2025

Source: Ducker Worldwide 2011

Aluminum Today

Tesla Model S

World Car of the Year -Automobile Magazine's Car of the Year

All-electric vehicle relies on an **all-aluminum body** to save weight, allowing it to **go farther** while producing **zero emissions** and offering **rapid acceleration** and **nimble performance**.

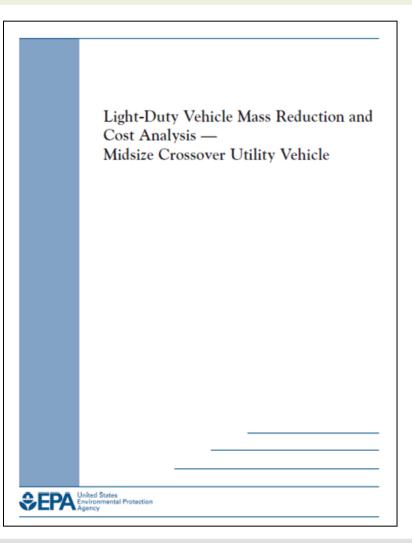
Land Rover Range Rover World's First All-Aluminum SUV

All-aluminum unibody

- 39 percent lighter than outgoing steel body
- Total vehicle weight savings of 926 lbs.
- Significant enhancements performance agility fuel economy CO2 emissions

High volume, all

aluminum cars and trucks will enter the marketplace


Laser Welding Opportunities – Auto Body Aluminum

EPA Crossover SUV (MMV) Study

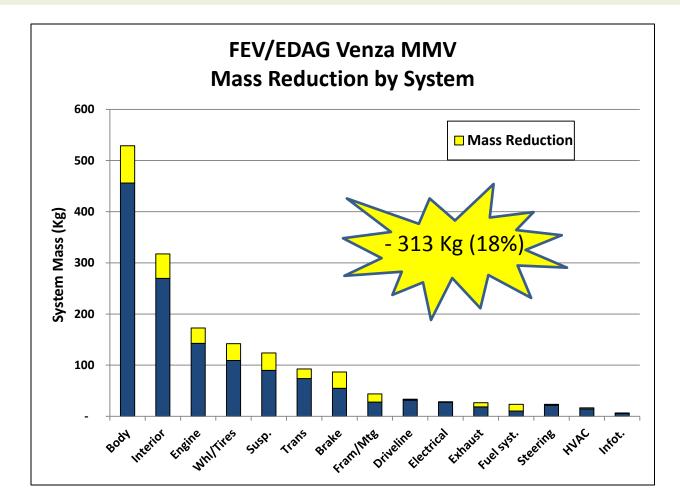
"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

Crossover SUV (MMV) Report

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

Objectives:

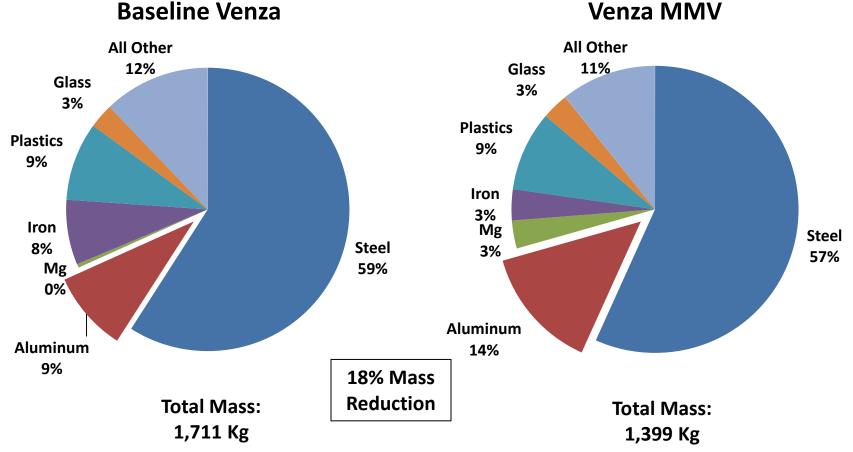
- Mass Reduction 20%
- Retain: Size
 Functionality
 Safety (5 Star)
 NVH
 Performance



- Proven Toyota body structure
- Cost increase < 10%
- Materials and process <u>available and practical 2017</u>

Source: EDAG

Crossover SUV (MMV) Mass Reduction


Crossover SUV (MMV)

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

MASS REDUCTION BY MATERIAL			
Steel (HSS/AHSS) 57% BIW BIW, Bumper, Wheels	54 Kg		
Aluminum Closures, Transmission, Arms, Knuckles, Hubs, Calipers	53 Kg		
Magnesium Sub-frame, Seating, IP Beam, Engine	37 Kg		
Plastics Interior/Exterior trim (MuCell, PolyOne)	38 Kg		
Downsizing Engine/Trans, Fluids, Brakes, Exhaust	96 Kg		
Design Park Brake, Seats, Trans, Window reg.	35 Kg		
TOTAL:	313 Kg		

Crossover SUV(MMV)

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

Venza MMV

Source: EDAG/EPA http://www.epa.gov/otaq/climate/documents/420r12026.pdf

DRIVEALUMINUM

FEV/EDAG Crossover SUV

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

COST

Total LSV cost : \$148 reduction

Premium costs – HSS/AHSS (BIW), aluminum (closure panels) and magnesium (castings). Offset by mass driven cost reductions in other vehicle systems.

	Mass	Cost	Net \$/Kg Reduction
BIW: 50% HSS/Aluminum	-54 Kg	+ \$ 136	+ \$ 1.69 / Kg
Closures: Aluminum	- 17 Kg	+\$91	+ \$ 4.71 / Kg
Rest of Vehicle	- 241 Kg	- \$ 375	- \$ 1.94 / Kg
Total Vehicle	- 313 Kg	- \$ 148	- \$ 0.47 / Kg

Crossover SUV (MMV)

"Light-Duty Vehicle Mass Reduction and Cost Analysis – Midsize Crossover Utility Vehicle"

FINDINGS

- Reduced mass mid-size sedan can meet all design objectives: size, functionality, safety, NVH, performance
- 18% (313 Kg) mass reduction achievable MMV
 - advanced steel BIW
 - aluminum closures, chassis, suspension, brakes
 - Magnesium seats, sub-frame, cradle, IP beam
- FE impact: +3.1 MPG fuel economy (from 27 to 30.1 MPG)
- Estimated cost impact: -\$148 (reduction)

AIV Crossover SUV

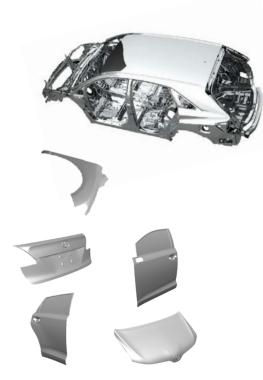
SUV Aluminum BIW Concept Study

January 23, 2013

AIV Crossover SUV

Objectives:

- Maximum Practical Mass Reduction <u>Aluminum Intensive Body</u>
- Retain: Size


Functionality Safety (5 Star) NVH Performance

- Proven Toyota body structure
- Cost increase: TBD

- Materials and process <u>available and practical 2017</u>

Source: EDAG

AIV Crossover SUV Body

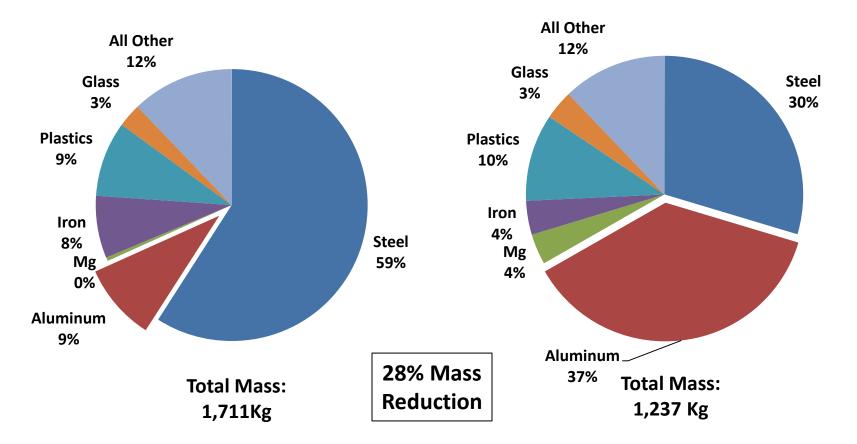
AIV Body Mass Reductions

	Baseline	AIV	Reduction
BIW	378 Kg	220 Kg	162 Kg
Doors	96 Kg	67 Kg	28 Kg
Hood	18 Kg	10 Kg	8 Kg
Hatch	15 Kg	8 Kg	7 Kg
Fenders	7 Kg	5 Kg	2 Kg
TOTAL	514 Kg	310 Kg	208 kg <i>(40 %)</i>

Source: EDAG/ATG

AIV Crossover SUV – Materials Summary

MASS REDUCTION BY MATERIAL


With FEV/EDAG LW Venza non-body content

Aluminum BIW, Closures, Cradle, Sub-frame, Knuckles, Calipers	242 Kg
Magnesium Sub-frame, Seating, IP Beam, Engine	37 Kg
Plastics Interior/Exterior trim (MuCell, PolyOne)	38 Kg
Downsizing Engine/Trans, Fluids, Brakes, Exhaust	117 Kg
Design Park Brake, Seats, Trans, Window reg.	35 Kg
TOTAL:	476 Kg

AIV Crossover SUV Materials

Baseline SUV

AIV SUV

AIV Crossover SUV – Mass Reductions

COST

Total AIV cost increase: \$534

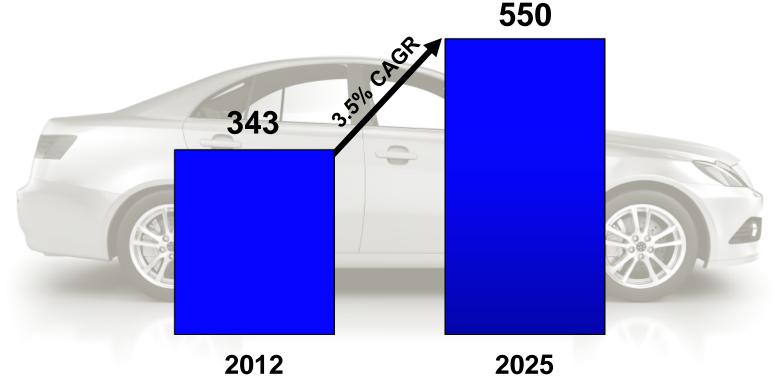
Premium costs – Aluminum (BIW, closure panels) and magnesium (castings). Partially offset by mass driven cost reductions in other vehicle systems.

	Mass	Cost	Net \$/Kg Reduction
BIW: Aluminum	- 162 Kg	+ \$ 789	+ \$ 4.87 / Kg
Closures: Aluminum	- 44 Kg	+ \$ 135	+ \$ 3.06 / Kg
Rest of Vehicle	- 263 Kg	- \$ 389	- \$ 1.81 / Kg
Total Vehicle	- 476 Kg	+ \$ 534	+ \$ 1.12 / Kg

AIV Crossover SUV – Findings

FINDINGS

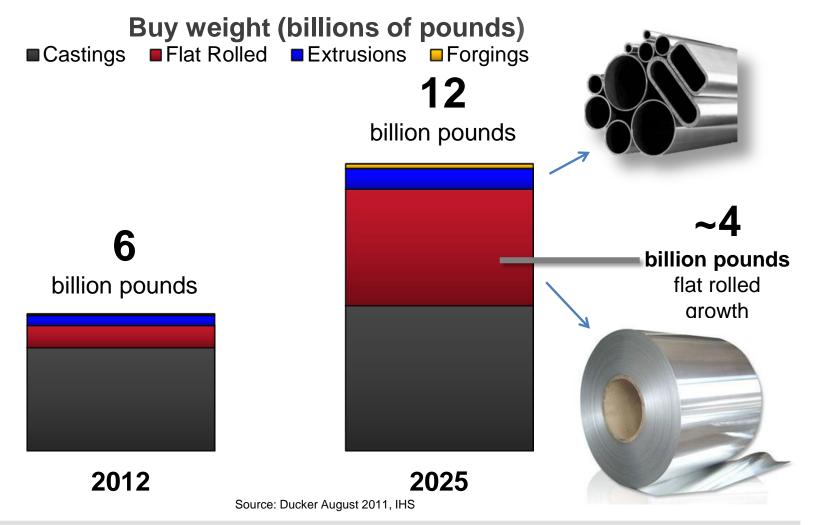
- Aluminum intensive mid-size cross-over SUV can meet all design objectives: size, functionality, safety, NVH, performance
- 28% (476 Kg) total mass reduction achievable MMV
 aluminum BIW, closures, chassis, suspension, brakes
- FE impact: **+4.8 MPG fuel economy** (from 27 to 31.8 MPG)
- Estimated cost impact: +\$534 (\$1.12/Kg)


Emerging Opportunities – Auto Aluminum

Market Needs / OSP Opportunities

-- Capable <u>aluminum</u> processors needed --

Automotive aluminum content is expected to increase ~60% by 2025

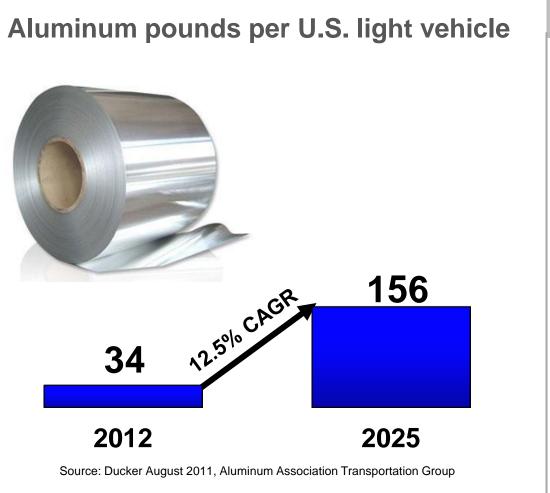

Aluminum pounds per U.S. light vehicle

Source: Ducker August 2011, Aluminum Association Transportation Group

Aluminum cast and <u>mill products</u> shipments for N.A. light vehicles expected to <u>double</u> by 2025

~5x aluminum <u>flat rolled</u> products content growth expected

Historic Applications



heat exchangers

closure panels

Future

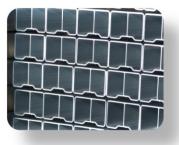
Applications

closure panels

body in white

Aluminum <u>extrusion</u> content expected to maintain the historic 4% CAGR

Historic Applications



brake systems

heat exchangers Aluminum pounds per U.S. light vehicle

27 4.5% CAGR 48 2012 2025

Source: Ducker August 2011, Aluminum Association Transportation Group

Future Applications

body in white

OSP - Automotive Aluminum Considerations

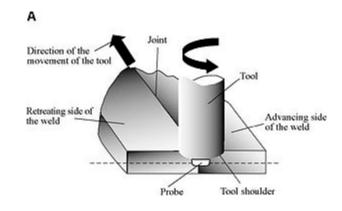
Aluminum Sheet/Extrusion

Material Management lighter – easier to move water spotting - avoid moisture transit, storage (precipitation, condensation) damageability - dent, scratch "soft" tempers (T4 vs. T6)

Slitting/Blanking "Slivers" - tool design

Inventory "SHRINKAGE"

Tailor welded blanks Value proposition


Extrusion: Precision cutting (0.2 mm), Miter cutting, Punching

Market Needs – OSP Opportunities

The Value Proposition: Cost Savings (Auto Body) Material Utilization (blanking recovery) Value: <u>3-4 X</u> value of steel TWB

Greatest opportunity:

Tailor welded blanks blank optimization gauge optimization Laser welding Friction stir welding avoid heat-affected-zone (HAZ)

Aluminum Sheet & Extrusion Processing

OPC Industry Opportunity

- Significant Growth Potential
- Accommodate characteristics of aluminum
- <u>Demand Driver</u>: VALUE PROPOSITION (COST, COST, COST)

(Must be technical success)

Material cost

Processing cost System cost

Thank You!

www.DriveAluminum.org @DriveAluminum