VENZA Aluminum BIW Concept Study

April 2013

Surname First name, Dept., Month/Year 40.70.10.V02 PPT Master landscape EDAG Status: 10/12/2010

Contents

- 1. Introduction
- 2. Project Aims
- 3. Development Plan (NVH and Crash)
- 4. Material Selection
- 5. Joining Technology
- 6. Aluminum BIW Concept Description
- 7. Performance Summary NVH
- 8. Performance Summary Crashworthiness
- 9. Summary
- **10. Recommendations and Next Steps**
- Appendix A Crashworthiness Details
- **Appendix B NVH Details**
- Appendix C Aluminum Cost Estimate

1.0 Introduction

Introduction

The study focused on taking the steel Venza BIW and developing a CAE concept for an aluminum BIW with equivalent performance within the following boundaries:

- Project is a "feasibility study" only.
- Concept will be of riveted / bonded construction (with use of extrusions/sheet/castings)
- The use of castings in the BIW will be minimized (for cost / complexity reasons)
- Aluminum materials used in the study will be "current technology" only
- Concept will be developed in CAE (no CAD data will be created)
- No detailed manufacturing feasibility will be performed in this stage of the project
- The following load cases were defined for the project (as per the base Venza)
 - Crashworthiness
 - FMVSS 208 Frontal Crash
 - IIHS 35mph ODB Frontal Crash
 - FMVSS 301 Rear Impact
 - FMVSS 214 Side impact (MDB)
 - FMVSS 216 Roof Crush
 - NVH
 - Static torsion and bending stiffness
 - BIW normal modes (1st structural)

2.0 Project Aims

Project Aims

- 1. Delivery of an aluminum intensive BIW FEA model
- 2. Identification of materials and potential construction
- 3. An evaluation of performance across all of the load cases considered
- 4. Target performance to be similar to the base Venza platform
- 5. Target BIW mass reduction of +30% over steel

3.0 Development Plan (NVH and Crash)

^{40.70.10} V02_PPT_Master landscape_ED&G_Status: 10/12/2010

4.0 Material Selection

MATERIAL SELECTION

- For the purposes of the feasibility study 4 basic aluminum materials have been selected:
 - 6022 T6 Alloy Sheet
- Used for "high" strength areas

- Default material for most panels

- 5754 O Alloy sheet
- 6082 T6 Extrusion
- Generic Casting

- Used for all extrusions
- Used for all castings
- Properties have been supplied by the Aluminum Association and a basic material model created in LS-DYNA using MAT 24 (PWL or BL stress strain curves only).
- Failure criteria is not considered at this time
- It is important to note the following:
 - This is only a structural feasibility study (formability / environmental factors not yet considered)
 - Exterior panels would use a higher grade material (6XXX T4 or similar for dentability)
 - Castings are only conceptual in the FEA model material and manufacturing process are not defined at this point
 - Aluminum door weights are projected only not designed / developed

Materials (Aluminum)

Aluminum Grade	Yield Stress
6022 T6 Alloy Sheet	290Мра
5754 O Alloy sheet	117Мра
6082 T6 Extrusion	315Мра
Generic Casting	160Mpa

4.0 Material Selection

Materials by Color

5.0 Joining Technology

Self Piercing Rivets (SPR)

- Allow up to 4T thickness connections
- Compatible with bonding
- Mature technology (E.g. HENROB)
- For LS-DYNA/OPTISTRUCT represented as "spot welds"
- No failure will be considered in this study

Adhesive

- The concept would use of Epoxy adhesive in addition to the Rivets for the purposes of the concept study the adhesive has not been implemented into the FEA models. The expected implications on the performance are detailed below, see recommendations.
- Global stiffness
 - Expected increase in stiffness (static) of 10-15%
 - Reduced loads in the Rivets
- Crashworthiness
 - Increased load capacity in sections during crash events
 - Reduced loading in the rivets

- The concept has been developed from the steel BIW (with the aim of a similar assembly sequence)
- For the study the following bounds were selected on material thickness:
 - Extrusions (1.4mm-4mm)
 - Castings (2.5mm -10mm)
 - Stamped parts (0.9mm -3.0mm

Tunnel Extrusion

- The tunnel shape from the baseline floor is removed and replaced with the aluminum extrusion tunnel
- Concept requires further integration into the BIW sheet metal at the front/rear
- Extrusion profile is not optimized (potential increase in gauge may be required)

Shock Tower - Frontal

Baseline (Steel)

• Brackets shown integral would change to bolt on

Shock tower - rear

- Concept is modelled as a 4 piece casting
- P1/2 have potential to go to stamping
- Complexity of P3/4 can be reduced

• Front Bumper

• Extruded section is not optimized (constant thickness in the concept)

Seat Cross Member

Seat Cross Member – Extrusion profiles with stamp part on the side for connections

Vehicle Mass

	Area	Baseline	Optimzied Steel Model	Aluminum Model
System	Sub-system	System Mass	System Mass	System Mass
Closures	Door Frt	53.2	53.2	38.0*
	Door RR	42.4	42.4	31.0*
	Hood	17.8	10.1 (Aluminum)	10.1
	Tailgate	15.0	7.7 (Aluminum)	7.7
	Fenders	6.8	4.8 (Aluminum)	4.9
Mass Sub-T	otal	135.3	118.3	91.7
Sub-To	tal Savings Over Baseline	N/A	12.6%	32.2%
	Underbody Asy (Floor)	40.2	32.0	20.7
	Front Structure	42.0	36.2	27.7
BIW	Roof Asy	31.3	24.1	16.7
	Bodyside Asy	161.9	141.9	88.4
	Ladder Asy	102.6	90.2	66.0
Mass Sub-T	otal	378.0	324.4	219.5
Sub-To	tal Savings Over Baseline	N/A	14.2%	41.9%
	Radiater Vertical Support	0.7	0.7	0.7
BIW Extra	Compartment Extra	4.5	3.2	3.3
	Shock Tower Xmbr Plates	3.0	4.4	1.5
Mass Sub-T	otal	8.2	8.3	5.5
Sub-To	tal Savings Over Baseline	N/A	-1.2%	32.9%
Bumpor	Front Bumper	5.1	4.7	2.8
Битрег	Rear Bumper	2.4 (Aluminum)	2.4 (Aluminum)	2.4
Mass Sub-T	otal	7.5	7.1	5.2
Sub-To	tal Savings Over Baseline	N/A	5.3%	30.7%
Mass Syste	m Total	528.9	458.1	321.9
Total M	ass Saving Over Baseline	N/A	13.4%	39.1%
* Directional	Mass Only			

7.0 Performance Summary NVH

Vehicle NVH

Study Description	Overall Torsion Mode (Hz)	Overall Lateral Bending Mode (Hz)	Rear End Match Boxing Mode (Hz)	Overall Vertical Bending Rear End Breathing Mode (Hz)	Torsion Stiffness (KN.m/rad)	Bending Stiffness (KN/m)	Test Weight BIW (Kg)
Baseline Model	54.6	34.3	32.4	41.0	1334.0	18204.5	407.7
Aluminum BIW	64.5	39.3	40.7	49.1	1469.6	19855.0	243.0
Percentage Change (%)	+18.1%	+14.6%	+25.6%	+19.8%	+10.2%	+9.1%	-40.4%

Comment:

Stiffness increased to higher than steel base stiffness.

Model Description

Model 001 = Base Model (Steel BIW) :1_fmvss208_usncap_toyota_venza_06_050_fix_shear_failure_r7_04.key
 Model 029 = Aluminum BIW Model: 1_toyota_venza_fr_usncap_029.key

No	Mossurement	Variation			
NO.	weasurement	001	029		
	G-Pulse	1st posk-16 0g @ 0.4ms	1 at: 11 6a @ 11 5ma		
1	Driver	2nd neak = 15.00 @ 9.4113	nst. 11.09 @ 11.5ms max: /9.7g @ /2.0ms		
	Passenger	2110 peak=+0.39 @ ++.3113	max. +3.7 g ⊚ +2.0m3		
	Dynamic Crush				
2	Driver	610.5	572.8		
	Passenger				
	Dash Panel Intrusion				
-	Driver Footwell	56.7	27.8		
	Driver Toepan LH	131.1	58.4		
	Driver Toepan Ctr	147.2	56.2		
3	Driver Toepan RH	105.2	68		
	Brake Pedal				
	Left IP	15.5	4		
	Right IP	40.8	5.3		
	Door (A-Pillar)	2.3	3.9		
4	Extra Info				
4	Time to Zero Velocity (ms)	60.5	55.7		

Summary

□ The crash pulse has increased over the base VENZA

□_Intrusions and dynamic crush are both reduced

□ Countermeasures recommended to increase efficiency of the crash pulse (increased force early in the event) and some measures to allow more dynamic crush (packaging of engine bay / more dash intrusion)

8.0 Performance Summary Crashworthiness

IIHS Frontal ODB Impact 35MPH

Model Description

Model 001 = Base Model (Steel BIW) : 2_fmvss208_odb_toyota_venza_06_050_shear_failure_04.key
 Model 029 = Aluminum BIW Model: 2 toyota venza fr euncap 029.key

		Variation				
No.	Measurement	001	029			
		(Steel BIW)	(Aluminum BIW)			
1	Dynamic Crush					
	Driver	1092.0	1010 6			
	Passenger	1082.9	1010.6			
r	Dash Panel Intrusion					
2	Driver Footwell	141.6	54.5			
	Driver Toepan LH	180.7	61.7			
	Driver Toepan Ctr	179.0	64.1			
	Driver Toepan RH	84.6	18.1			
	Brake Pedal					
	Left IP	42.8	29.7			
	Right IP	54.7	24.3			
	Door (A-Pillar)	20.5	17.5			
3	Extra Info	00.2				
	Time to Zero Velocity (ms)	99.3	95.5			

Result Summary

Summary

□ Intrusions are all reduced compared to the base design

□ Trade off against crash pulse in the FRB is possible

8.0 Performance Summary Crashworthiness

FMVSS214 Side MDB Impact

Model Description

Model 001 = Base Model (Steel BIW) : 3_fmvss214_sincap_toyota_venza_06_050_fix_shear_04.key
 Model 029 = Aluminum BIW Model: 3_toyota_venza_si_sincap_alu_029.key

Result Summary

Measured Level	001	029
Level-5	6.0	-9.6
Level-4	165.5	130.8
Level-3	245.0	187.0
Level-2	233.3	175.0
Level-1	133.7	73.3

 $\ensuremath{^*}$ All measured points are taken at the vehicle exterior point

Summary

- Predicted intrusions are similar to the baseline
- Beltline velocity has increased
- □ High strains in the B pillar are a concern possible countermeasures include
 - □ Higher grade material for the reinforcement (reduction in plastic strain)
 - Use of a Boron steel reinforcement .
 - A different reinforcement concept that results in less strain localization

Measure Location : Longitudinal 1200 Coord.

Level	Description	Height Above Ground (mm)
1	Sill Top Height	328
2	Occupant H-Point Height	630
3	Mid-Door Height	671
4	Window Sill Height	1020
5	Window Top Height	1531

Model Description

Model 001 = Base Model (Steel BIW) : 5_Rear_FMVSS301_toyota_venza_lh_06_050_09_shear_failure_04.key
 Model 029 = Aluminum BIW Model: toyota_venza_fmvss301_rimp_aluminum_029.key

Result Summary

		Variation			
No.	Measurement	Model 001 (Steel BIW)	029 (Aluminum BIW)		
1	Under Structure Zone Deformation (mm)				
	Zone 1 Deformation	140.2	98.6		
	Zone 2 Deformation	292.5	436.3		
	Zone 3 Deformation	0.00	50.7		
	Zone 4 Deformation	0.00	27.9		
2	Door Opening (mm)				
	Beltline	1.90	10.3		
	Dogleg	0.20	13.8		

Summary

- □ Performance is degraded in the zone 2 area compared to the base VENZA
- Deformation in the area of the fuel filler and filler pipe is main area of concern
- Dessible countermeasures increased gauge/thickness in rear rail / bumper system

8.0 Performance Summary Crashworthiness

FMVSS216a Roof Crush

Model Description

Model 001 = Base Model (Steel BIW) : toyota_venza_roof_crush_fmvss216a_r006_050_05_shear_failure_04.key
 Model 029 = Aluminum BIW Model: toyota_venza_roof_crush_fmvss216a_029.key

Mass of CAE Model 029 = 1445.4 kg Roof crush resistance force = $4 \times UVW = 57.8 \text{ kN}$ Maximum Load = 74.5 kN

Summary

□ Force requirement is met

9.0 Summary

- A structural feasibility study has been performed to create an aluminum BIW concept based on the steel VENZA FEA model.
- The concept is a pressed /extruded/cast aluminum structure connected using self piercing rivets and structural bonding.
- The potential mass savings in the 35 40% range over the base steel BIW has been shown. However, the study has not considered the following items all of which have the potential to reduce the potential mass saving:
 - Formability of the panels (this will drive changes to the geometry)
 - Material or rivet failure (a concern for the crash load cases)
 - Manufacturing (assembly considerations, access for rivet guns etc.)
 - Other load cases (that will effect the structural performance)
 - BIW durability
 - Other crash load cases (e.g. IIHS side / new FMVSS 214 etc)
 - Panel dentability
 - NVH considerations (local dynamic stiffness/acoustic etc.)
 - The effect of the Adhesive on the structural performance
 - Environmental considerations (temperature / serviceability etc.)

10.0 Recommendations and Next Steps

The recommendations and next steps for the project are detailed below for discussion:

1. Design Feasibility Study on the Concept (to include the following)

- · Formability of panels
- Material selection for panels/extrusions/castings
- Assembly feasibility

2. Development of the Concept (Phase 2)

- Incorporate the learning's from the design feasibility study
- Update material models and perform study to assess potential for failure in the base material and the rivets/bonding (material data/testing is required)
- Investigate alternative concepts for the front rails / B pillar
- Further optimize the body structure
- Improve the rear crash performance

3. Creation of Promotional Materials

- Information from 1 and 2 above
- Potential demonstrator parts including a build/test phases.

Toyota VENZA Appendix A

Crashworthiness Details

A-Pillar Deformation Comparison

Model 001 (Steel BIW)

Model 029 (Aluminum BIW)

Section Force Comparison X746 X566 X300 X130 X150 **Driver Side (LH)** FrontRail LONGI X-746 LH - X FrontRail LONGI X-566 LH - X 20000 20000 029 029 0 001 001 -20000--20000 -40000 -40000-Force Force -60000--60000--80000 -80000--1E+05 -1E+05--1.2E+05 -1.2E+05 -1.4E+05↓ 0 -1.4E+05↓ 0.02 0.040.06 0.08 0.1 0.1 0.02 0.04 0.06 0.08 0.1 0.12 Time Time LONGI X-300 - X LONGI X-130 - X LONGI X150 - X 1.4E+05 1.2E+051 1.2E+05 -029 -029 -029 1.2E+05-1E+05-1E+05 -001 -001 1E+05--001 80000 80000-80000-Force Force 60000-Force 60000 60000 40000-40000 40000 20000-20000 20000-0 n--20000|--20000∔ 0 -20000∔ 0 0.02 0.04 0.06 0.08 0.1 0.12 0.06 0.02 0.04 0.08 0.1 0.12 0.02 0.04 0.06 0.08 0.1 0.12 Time Time Time

Section Force Comparison

IIHS Frontal ODB Impact

Overall view

IIHS Frontal ODB Impact

Dash Panel Intrusion Comparison

X-Displacement 0.00 12.50 25.00 37.50 50.00 75.00 75.00 10.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Model 029 (Aluminum BIW)

A-Pillar Deformation Comparison

Model 029 (Aluminum BIW)

IIHS Frontal ODB Impact

Bumper Beam

<u>Shotgun</u>

Model 029 (Aluminum BIW)

IIHS Frontal ODB

Section Force Comparison

FMVSS214 Side MDB Impact

Door Deformation Comparison

Model 029 (Aluminum BIW)

FMVSS214 Side MDB Impact

Intrusion Comparison

Model 001 (Steel BIW)

Y-Displacement

Model 029 (Aluminum BIW)

Y-Displacement

Y-Displacement

Slot 1: Venza si_fmvss214-mdb intial run based o - State 42 at time 0.100001

FMVSS214 Side MDB Impact

B – Pillar Deformation

Model 001 (Steel BIW)

max. pl. strain (Shell/Solid)

Model 029 (Aluminum BIW)

max. pl. strain (Shell/Solid)

Section Force Comparison

Rear Bumper Impact Bottom View at time = 0.1 second

More intrusion – in zone 4

Model 029 (Aluminum BIW)

X Venza_rr_fmvss301_50mph_Alu_029 - State 42 at time 0.100001

Plastic Strain Distribution at time = 0.1 second

Model 001 (Steel BIW)

Fuel tank plastic strain at time = 0.1 second

Model 029 (Aluminum BIW)

Model 029 (Aluminum BIW)

max. pl. strain (Shell/Solid)

Section Forces Comparison on LHS

Section Forces Comparison on LHS

Section Forces Comparison on RHS

Venza Roof Crush

Deformation and Plastic Strain

Model 029 (Aluminum BIW)

Venza Roof Crush

Deformation and Plastic Strain

Model 001 (Steel BIW)

Model 029 (Aluminum BIW)

Venza Roof Crush

Plastic Strain – Alu029 – Roof Rail and B-pillar reinforcement

Toyota VENZA Appendix B NVH Details

BIW Stiffness

SUMMARY - BIW STIFFNESS EVALUATION

Variant	Description	Mass (kg)	Bending Stiffness (N/mm)*	Variant vs. Basis	Torsional Stiffness (kNm/rad)	Variant vs. Basis
001 (baseline)	Steel Baseline	407.7	18204	-	1334	-
029	Aluminum BIW from optimized steel baseline	243.0	19855	+9.1%	1470	+10.2%

Bending Stiffness Evaluation

Torsional Stiffness Evaluation

BIW Normal Modes

Variant: venza_biw_modal_R001_V029

R001_V029 (243.0 kg): Rear Torsion → 40.7Hz Lat Bending → 39.3Hz Vertical Bending → 49.1Hz Overall Torsion → 64.5Hz

Displacement & Energy Density Plot

Displacement shown is with a Scale factor of 20

BIW Normal Modes

Variant: venza_biw_modal_R001_V029

Displacement & Energy Density Plot

Displacement shown is with a Scale factor of 20

R001_V029 (243.0 kg): Rear Torsion → 40.7Hz Lat Bending → 39.3Hz Vertical Bending → 49.1Hz Overall Torsion → 64.5Hz

7.0 Performance Summary NVH

Vehicle NVH

Study Description	Overall Torsion Mode (Hz)	Overall Lateral Bending Mode (Hz)	Rear End Match Boxing Mode (Hz)	Overall Vertical Bending Rear End Breathing Mode (Hz)	Torsion Stiffness (KN.m/rad)	Bending Stiffness (KN/m)	Test Weight BIW (Kg)
Baseline Model	54.6	34.3	32.4	41.0	1334.0	18204.5	407.7
Aluminum BIW	64.5	39.3	40.7	49.1	1469.6	19855.0	243.0
Percentage Change (%)	+18.1%	+14.6%	+25.6%	+19.8%	+10.2%	+9.1%	-40.4%

Comment:

Stiffness increased to higher than steel base stiffness.

Toyota VENZA Appendix C

Aluminum Cost Estimates

Description	Estimated Mass Reduction "Kg"	Estimated Cost Impact "\$"	Average Cost/ Kilogram "\$/Kg"
Body Structure Subsystem	10.0	07.50	0.44
Underbody Asy	19.8	-67.56	-3.41
Front Structure Asy	14.3	-121.84	-8.49
Roof Asy	14.6	-44.81	-3.07
Bodyside Asy	72.2	-306.60	-4.25
Ladder Asy	38.1	-235.53	-6.19
Bolt on BIP Components	3.2	-3.97	-1.23
Body Closure Subsystem			
Hood Asy	7.7	-27.70	-3.62
Front Door Asy	15.0	-21.65	-1.44
Rear Door Asy	11.3	-19.31	-1.70
Rear Hatch Asy	7.2	-21.21	-2.93
Front Fenders	2.0	-16.22	-8.25
Bumpers Subsystem			
Front Bumper Asy	2.3	-8.60	-3.82
Rear Bumper Asy	0.0	0.00	0.00
Totals	207.7	-895.01	-4.31
"+" = mass decrease, "-" = mass increas	se		
"+" = cost decrease, "-" = cost increase			