Light Vehicle Aluminum Content and Outlook Study

Prepared for The Aluminum Association by Ducker

Scope of Analysis: Markets

.

- 24. Electric Traction Motor Housing
- **25. Transmission Case/EV Gearbox**

Acronyms & Definitions

AA	Aluminum Association
ABS	Automotive Body Sheet
AEC	Aluminum Extruders Council
AL	Aluminum
AHSS	Advanced High Strength Steel
AISI	American Iron and Steel Institute
ATG	Aluminum Transportation Group
B&C	Body-in-White & Closures
BEV	Battery Electric Vehicle
BIW	Body-in-White
CARB	California Air Resources Board
CFRP	Carbon Fiber Reinforced Polymers
CMS	Crash Management System
CPV	Content Per Vehicle (net lbs.)
СҮ	Commercial Year (relates to sales)

••••

Demand	Gross Demand of Aluminum
DOE	Department of Energy
E-drive	Electric Motor with Gearbox and Inverter
EA	European Aluminum Association
EIA	Energy Information Administration
EPA	Environmental Protection Agency
EV	Plug-in Vehicles BEV & PHEV (excludes FHEV)
FCST	Forecast
FCEV	Fuel Cell Electric Vehicle
FHEV	Full Hybrid Electric Vehicle - No Charging Plug
FRP	Aluminum Flat Rolled Product (see ABS)
FMVSS	Federal Motor Vehicle Safety Standards
GFRP	Glass Fiber Reinforced Polymers
HPDC	High Pressure Die Casting
HSS	High Strength Steel
НТ	Heat Treated
IIHS	Insurance Institute for Highway Safety

IRA	Inflation Reduction Act
LTR	Light Truck
LV	Light Vehicle
MHEV	Mild Hybrid Electric Vehicle (48V)
MPG	Miles Per Gallon
MY	Model Year
NHTSA	National Highway Traffic Safety Administration
PHEV	Plug-in Hybrid Electric Vehicle
PFCEV	Plug-in Fuel Cell Electric Vehicle
PPV	Pounds Per Vehicle Averaged on the Total Production (net weight)
PWT	Powertrain (engine, motor, transmission)
SAE	Society of Automotive Engineers
SMC	Sheet Moulding Composite
UHSS	Ultra High Strength Steel
USMCA	United States, Mexico, Canada Agreement

Key Study Takeaways

Aluminum 2022 Market Highlights

	2	3
Automotive BEV Growth	Mix Continues to Favor Large Vehicles	Regulations Including the IRA are Key for Aluminum Growth
Proliferation of market with new BEVs have dramatically changed the NA light vehicle landscape	The mix of passenger cars vs. light trucks highlight market affinity toward larger vehicles, also driving aluminum CPV upwards	Regulations stick with CO ₂ and MPG targets, EVs are required to meet goals. Non EVs still adopting aluminum for mass savings
2022 BEV share of production was ~6%, nearly doubling its share compared to 2020. By 2030, BEVs are expected to exceed 36% share of production	2020 Car vs. Light Truck mix: 25% / 75% 2022 Car vs. Light Truck mix: 19% / 81%	EPA and NHTSA are likely to introduce new CO ₂ and MPG targets for 2027 to 2030 and beyond – further cementing EV contribution for CAFE goals
The average BEV in 2022 has an average aluminum content of 885 ppv, 85% more than its non- BEV counterpart. The average 2020 BEV contained 643 PPV	The average light truck in 2022 contains over 30% more aluminum per vehicle than passenger vehicle	IRA stipulations include USMCA manufacturing requirements and material localization goals

....

....

.

....

....

....

.

....

· · · · · ·

DUCKER

Aluminum CPV Outperforms Near Term Expectations

Aluminum CPV continues its uninterrupted growth with a net gain of 59 pound per vehicle between 2020 and 2025

2022 CPV is 501 net PPV, resulting in 8.2 billion pounds of gross aluminum demand (for 14.2 M vehicles)

Aluminum CPV will grow by almost 100 net PPV between 2020 and 2030 (base scenario)

Near Term Aluminum Growth Led by Extrusions and Sheet

> Aluminum extrusions grew by 13 PPV between 2020 and 2022, while sheet grew by 26 PPV

Extrusions have demonstrated significant growth within the BIW, accounting of 11 PPV growth. ABS and sheet for thermal management account for most all of the 26 PPV growth

The average BEV in 2022 contains 492 PPV of castings, compared with only 290 PPV for its non-BEV counterpart

Aluminum Product Form Content (2022)

Content per vehicle in 2022 & CAGR between 2022 and 2030

Castings (+3 PPV by 2030)

Remains the largest product form for aluminum components as powertrain and transmissions components are compensated by the new EV components (e-drives, high voltage devices, etc.) and structural casting for body-in-white

Sheet (+15 PPV by 2030)

Promoted by efficiency and weight reduction targets as well as product mix leaning toward larger vehicles, aluminum closure demand continues its growth

Key Growth Components (2022 to 2030)

Source: Ducker

EV components gain shares and naturally increase BEV aluminum content per vehicle thanks to EV specific components and additional aluminum components (chassis, BIW) to compensate the weight

Long Term Aluminum Adoption Drivers

EV SHIFT

- **EV Incentives & IRA**
 - Boost EV demand
 - Bring EV OEM and supply chain onshore
- New Components in Vehicles
 - Weight reduction requirements and EV specific components to increase aluminum content

MANUFACTURING

- Structural Castings
 - Further increase of AL application in BIW
- Megacasting Adoption
 - Increase aluminum content by displacing traditional steel solution

SUSTAINABILITY

- Carbon Neutrality Targets
 - Strong trend toward low carbon aluminum •
 - Rheocasting and other innovative solutions to increase ability to use more secondary aluminum
- CO₂ Tailpipe Policy
 - Increasing needs to improve efficiency in ICE due to more stringent CAFE standards

ALUMINUM AVAILABILITY

- **New Capacity Additions**
 - New production lines are likely to increase productivity (e.g., HPDC, extrusions, sheet, etc.)
- Material Costs Parity
 - Reduction in the gap between the cost of aluminum and competing materials

MARKET SHIFT

- Larger Vehicle Segment Mix
 - Trend toward larger vehicles that have more aluminum content per vehicle
- **Steady Premium Share**
 - Ensure aluminum demand due to above average aluminum content in premium models

Long Term Aluminum Competitiveness

Although all Ducker scenarios point to YoY growth, there are risks to monitor that may impact the rate of growth for aluminum in the long term (2026 - 2030)

Source: Ducker

Breakthroughs in Gen 3 steel manufacturing and processing allowing for broader vehicle adoption in BIW and Chassis

Slower electrification ramp up due to higher material costs and lack of sufficient charging network

Conclusions

A. Continuous aluminum growth

- Aluminum content to continue growing
 - CAGR 1990-2000: 4.6%
 - CAGR 2000-2010: 2.8%
 - CAGR 2010-2020: 3.0%
 - CAGR 2020-2030: 1.9%
- Additional growth will come from new applications and innovation
- Overall content per vehicle is expected to hit 556 lbs. per vehicle by 2030

B. Electrification benefits to aluminum

- Electrification positively affects aluminum content and compensates the loss from powertrain components
- New components include e-drives, battery housings, and multiple high voltage devices
- HPDC benefits the most from electrification with more complex components
- Weight reduction is key to meet range expectations and to lower battery associated costs

D. Regulation drives growth

- Despite the benefits from EVs in the CAFE calculations, OEMs must continue working on weight reduction
- Vehicle weight may be further scrutinized leading to setting weight limits on EVs
- Carbon neutral strategies are pushing towards low carbon solutions including green aluminum and increases the need for recycling

E. OEMs to increase production

- IRA is driving more OEM production in North America to benefit from tax incentives leading to increased aluminum gross demand
- New factories to focus on EV production with higher aluminum content per vehicle
- Premium carmakers are expanding their North American footprint with aluminum intensive crossovers (e.g., BMW, Audi, Genesis, etc.)
- IRA push for more USMCA production is likely to increase North American exports

C. Production mix impacts content

- Supply chain disruptions have led OEMs to lower production on smaller and less profitable models
- Aluminum content soared between 2020 and 2022 (4.5% CAGR) because of the combined effect of increased shares of aluminum intensive vehicles and electrification
- To improve affordability, OEMs may reintroduce smaller segment models (steel intensive)

F. Increased competitive pressure

- Competing materials are innovating to gain shares
 - New high strength and Gen 3 steels to continue replacing mild and HSS steels as well as competing more with aluminum
 - Composites more actively targeting aluminum closures and battery housings
- Aluminum continues to increase its competitive innovation and dynamics

Study Insights ۲

2022 STUDY SUMMARY REPORT - DUCKER HOLDINGS LLC

Production Forecast Comparison (2020 study vs. 2022)

Unexpected market conditions have propelled vehicles with higher aluminum content per vehicle (BEVs and D/E/F size segments) into the market for 2022, resulting in a strong growth in content per vehicle; however, this above average growth will ease, and the content increase will now continue at a slower pace

North America Light Vehicles Production Forecast

Share 2020 Study BEV PHEV ICE-Based 2022 Study BEV PHEV ICE-Based

2020

Market volume has dropped due to COVID-19 lockdowns and the subsequent supply chain disruptions

- ICE (inc. MHEV) powertrains absorbed the entirety of the volume loss and, in the meantime, the volume of BEVs and hybrids increased more than originally forecasted
- As a result, the powertrain mix, along with the product mix (B and C segment contraction) increased share for vehicles with higher aluminum content, which has led the to the current market showing a distortion in shares increasing the content per vehicle more than expected in first place
- The strong content per vehicle increase between 2020 and 2022 will continue at a slower pace in the years to come

....

.

2021

2022

Long Term Aluminum Growth

Aluminum continues its unprecedented and uninterrupted growth through 2030 with 42 additional pounds per vehicle between 2020 and 2022, though, a multitude of external factors may slow its rate of growth in the next decade

Source: Ducker Q1-2023

....

Forecast Bridge Analysis

Gross demand increases between 2020 and 2022 are the result of production volume increase and product mix evolutions with larger vehicles and stronger ramp-up of electrified vehicles

Variances in 2	020 Gross Dema	and Compared to Today
Vehicle	2020 Adjustment	LMC released 2020 final production in Q1 2021 with minor adjustment to Q4 2020 production volume, bringing total 2020 production from 12.8M to 12.9M, and resulting in 0.1B lbs. AL gross demand
Production	2022 Recovery	2022 production is forecasted to reach 14.2M, almost 1.3M units higher than 2020 when production was seriously disrupted by COVID, leading to ~0.8B lbs. AL organic growth (w/o CPV change)
BEV Growth	BEV Share	Based on 2020 BEV AL CPV, there will be additional 0.3B Ibs. AL gross demand driven by the increasing volume of BEV production in NA (0.4M in 2020 vs. 0.8M in 2022)
	Non-BEV Share	The rest of 0.5B organic AL growth will be from non-BEV volume increase (12.5M in 2020 vs. 13.4M in 2022)
	BEV CPV	BEV CPV has grown from 643 lbs. in 2020 to 885 lbs. in 2022, contributing to another 0.2B lbs. AL gross demand
Design Changes	Non-BEV CPV	Non-BEV CPV, although not increasing as fast as BEV, still grows from 454 lbs. to 478 lbs. during 2020 to 2022, resulting in 0.5B lbs. AL gross demand

Source: Ducker Q1-2023

.

.

....

....

....

....

Forecast Bridge Analysis

Overall Aluminum CPV has increased by 42 lbs. from 2020 to 2022. AL CPV in BEV and non-BEV has contributed for around 14 lbs. and 23 lbs. respectively, and other adjustments have the impact of around 6 lbs. increase

	BEV CPV	BEV CPV will grow from 643 lbs. in 2020 to 885 lbs. in 2022, driven by increasing share of aluminum intensive models	459.0 Forging 8 Extrusio 45
CPV Growth	Non-BEV CPV	Non-BEV CPV, although not increasing as fast as BEV, still grows from 454 lbs. to 478 lbs. during 2020 to 2022, driven by increasing penetration of AL in BIW, chassis, closures, etc., as well as vehicle mix change towards more aluminum intensive models	Sheet 107 Cast
Other Adjustments	AL Component Fitment	Ducker has refreshed and revised aluminum component fitment for some new SOP models based on latest research for 2022 ATG study	299

Source: Ducker Q1-2023

.

....

Product Form Growth Details

Gross demand in 2022 is expected to reach 2016 levels despite a 3-million-unit gap in production. Aluminum content increases to 501 lbs. per vehicle, however, the distribution among the different product forms evolves due to a different product mix and a transition to BEV

Source: Ducker Q1-2023

.

Sheet and Casting Aluminum Overview

Sheet: OEMs continue adopting aluminum closures; ICE efficiency improvement and BEV weight increase keep requiring lightweighting solutions Casting: downsizing along with the combined effect of lower market production and different product mix drive to lower powertrain and transmission CPV

Sheet CPV	2016	2020	2022	2026	2030
Powertrain	<1	<1	<1	<1	<1
Transmission	1	1	1	<1	<1
Driveline	-	-	-	-	-
Wheel	-	-	-	-	-
Thermal Mgt.	20	19	31	30	28
BIW	12	23	32	30	29
Chassis	<1	<1	<1	<1	<1
Closures	41	59	65	67	79
EV Specific	<1	1	2	7	11
Steering	-	-	-	-	-
Brake	_	_	_	_	-
Trim	<1	<1	<1	<1	<1
Total	77	107	133	137	148

Кеу Components

EV Motor Housing Key Components

Source: Ducker Q1-2023

.

....

....

....

....

....

EV Inverter/

Converter

Megacasting

Wheel

Knuckle/Wheel

<u>Carrier</u>

Shock Tower

Extrusion and Forging Aluminum Overview

Extrusion: strong interest for OEMs due to energy absorption properties leading to higher penetrations in EV batteries and crash related components Forging: current market is driven by European OEMs; however, electrification offers an opportunity to grow content per vehicle

Extrusion CPV	2016	2020	2022	2026	2030
Powertrain	1	1	1	1	<1
Transmission	<1	<1	<1	<1	<1
Driveline	3	3	2	2	2
Wheel	-	-	-	-	-
Thermal Mgt.	15	15	12	12	11
BIW	9	13	24	28	30
Chassis	6	6	9	9	9
Closures	-	-	-	-	-
EV Specific	<1	2	2	15	31
Steering	<1	<1	<1	<1	<1
Brake	2	2	2	3	4
Trim	3	3	4	4	4
Total	41	45	58	74	92
	Batterv	Sill/Rocke	r CN	MS I	Door Beam

Key Components

Source: Ducker Q1-2023

.

....

....

....

....

Knuckle/Wheel Carrier

Control Arm

BEV & PHEV New Launches 2022-2029

....

....

.

....

....

.

....

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

....

BEV new model launches outnumber PHEV model launches by an approximate factor of 3 in the future; OEMs favor BEVs. Note that the ICE vehicle launches will all have some form of mild electrification in this period

OEM Car Launch on the Forecast Period

Despite of the discontinuation of several models, EV startups will launch several BEV sedans in the upcoming years (Lucid, Canoo, Mullen, Fisker)

	2023	2024	2025	2026	2027	2028	2029
B-Segment Car	Mazda Mazda2 IC Only	Kia Rio IC Only					Mazda Mazda2 IC Only
		BMW 2 Series MHEV	Nissan Sentra IC Only	Cadillac C-Sedan EV BEV	Honda Civic FHEV/IC Only		BMW 2 Series MHEV/IC Only
C-Segment Car		Kia K3 IC Only	Nissan Versa IC Only/FHEV	Toyota Corolla IC Only/FHEV			
		Tesla Roadster BEV	Volkswagen Jetta IC Only/MHEV				
			Hyundai Elantra FHEV/IC Only				
	Ford Mustang IC Only	Chevrolet Camaro BEV	BMW 3 Series IC Only/PHEV	Cadillac D-Sedan EV BEV	Tesla Model 3 BEV	BMW 3 Series BEV	Chevrolet Corvette (Zora) BEV
	Chevrolet Corvette (Zora) FHE	V Dodge Cuda BEV/IC Only	Chevrolet Corvette EV BEV	Acura TLX BEV/IC Only		Volvo S60 BEV	Lucid D-Sporty EV BEV
D-Segment Car	Honda Accord FHEV/IC Only	Honda Accord PHEV	Hyundai IONIQ 6 BEV	Mullen DragonFLY BEV		Honda Accord FHEV/PHEV/IC Only	Subaru Legacy IC Only
	Kia K5 FHEV	Subaru Legacy IC Only	Lucid D-Conventional EV BEV	Infiniti D-Conventional EV BEV			
		Toyota Camry FHEV/IC Only	Canoo D-Sedan EV BEV				
			Nissan D-Conventional EV BEV	,			
F-Segment Car	Cadillac CELESTIQ BEV	Dodge Charger BEV/IC Only		Acura NSX BEV			
		Fisker Ronin BEV		Tesla Model S BEV			

BEV(FCEV) Dedicated **BEV(FCEV)/ICE** Variants **ICE-based Only**

OEM Light Truck Launch on the Forecast Period (1/2)

Over 130 light truck models will be launched from 2023 to 2025. Around half of them are BEVs, and most of the rest are hybrids

		2023		2024		2025
B-Segment LTR	Nissan Kicks IC Only	Canoo B-MPV EV BEV				
	Ford Bronco Sport BEV	Mazda CX-50 FHEV	Ford Bronco Sport FCEV	Honda CR-V PFCEV	Jeep Compass PHEV/IC Only	Volkswagen Tayron PHEV
	Chevrolet Equinox EV BEV	Infiniti QX50 FHEV	Chevrolet Equinox IC Only	Kia Sportage LWB FHEV	Toyota RAV4 IC Only/FHEV/PHEV	VinFast VF 7 BEV
	Honda HR-V (ZR-V) FHEV	Subaru Crosstrek IC Only	GMC Terrain IC Only	Genesis GV60 BEV	Cadillac OPTIQ BEV	Subaru Forester IC Only
C-Segment LTR	Mazda CX-30 MHEV	Toyota Corolla Cross PHEV	Jeep Recon BEV	Fisker PEAR BEV		
			Jeep Wagoneer S BEV	Faraday Future FF 81BEV		
			Volkswagen Tayron IC Only/MHEV	Canoo C-Pickup EV BEV		
			Ford Escape PHEV/FHEV/IC Only	Subaru Crosstrek PHEV		
			Lincoln Corsair PHEV/IC Only	Toyota C-Pickup FHEV		
	Chrysler Voyager PHEV	Cruise Origin BEV	Honda Prologue BEV	Acura RDX IC Only	Chrysler Pacifica BEV/PHEV/IC Only	Honda Passport IC Only/PHEV
	Mitsubishi Triton IC Only	Honda Pilot PHEV	Nissan Frontier IC Only	Hyundai Santa Fe IC Only/FHEV/PHEV	Chrysler Voyager PHEV/IC Only	Hyundai IONIQ 5 BEV
	Toyota Tacoma IC Only/FHEV	Workhorse C650 BEV	Jeep Cherokee BEV/IC Only	VinFast VF 8 BEV	Jeep Cherokee PHEV	Kia EV6 BEV
	Audi Q5 PHEV/MHEV	Nissan Murano IC Only	Toyota 4Runner FHEV/IC Only	Mullen FIVE BEV	BMW X3 BEV/FCEV/IC Only	Jeep Grand Cherokee BEV
D-Segment LTR	Ford Bronco FHEV		Audi Q5 Sportback PHEV/MHEV	Canoo Lifestyle BEV	BMW X4 MHEV/IC Only	Chrysler Airflow BEV
			BMW X3 MHEV/PHEV	Nissan Pathfinder FHEV	Honda Odyssey PHEV	Subaru Ascent IC Only
			MINI Traveller MHEV/PHEV/IC Only	Jeep Grand Cherokee MHEV/IC Only/PHEV	,	
			Volvo EX80 BEV	Subaru Outback IC Only		
			Cadillac SYMBOLIQ BEV	Volkswagen ID.8 BEV		
	BrightDrop Zevo 400 BEV	GMC Canyon IC Only	Ford Explorer EV BEV	GMC Acadia IC Only	Ford Explorer PHEV/FHEV/IC Only	Tesla E-Pickup EV BEV
	Lexus RX PHEV	Mercedes-Benz eSprinter BEV	Lincoln Aviator EV BEV	Acura ZDX BEV	Lincoln Aviator IC Only/PHEV	Toyota Highlander IC Only/FHEV
	Chevrolet Blazer EV BEV	Arrival E-Van EV BEV	GMC Acadia EV BEV	Honda Ridgeline IC Only/FHEV	Ford Ranger PHEV/FHEV	Toyota Grand Highlander PHEV
E-Segment LTR	Ford Ranger IC Only	LMC E-Van EV BEV	Chevrolet Traverse EV BEV	Kia EV9 BEV	Hyundai IONIQ 7 BEV	Lexus TX PHEV
	Volvo EX90 BEV	Jeep Gladiator PHEV	Buick Enclave Electra BEV	Lucid Gravity BEV	Mullen One BEV	Volkswagen ID.Buzz BEV
	Chevrolet Traverse IC Only	Toyota Grand Highlander IC Only/FHEV	Polestar 3 P519 BEV	VinFast VF 9 BEV		
	Chevrolet Colorado IC Only	Lexus TX IC Only/FHEV	Buick Enclave IC Only	Jeep Wagoneer IC Only/MHEV/EREV		
	Ford F-250/F-350 IC Only	Oshkosh NGDV IC Only	Ram 2500/3500 IC Only	Cadillac Escalade IQ BEV	Ram 2500/3500 FCEV	Cadillac Escalade IQL BEV
E-Sogmont ITP	GMC HUMMER EV SUV BEV	Oshkosh NGDV BEV	Ford Expedition FHEV/IC Only	GMC Sierra EV BEV	BMW X7 EV BEV	Edison Future EF1-T BEV
-Jeginent LIK	Chevrolet Silverado EV BEV	Tesla Cybertruck BEV	Lincoln Navigator BEV/IC Only	Ram 1500 REPB-EV BEV/EREV	BMW X7 MHEV/PHEV	Edison Future EF1-V BEV
	Bollinger DELIVER-E BEV		Volvo EX100 BEV		Ford F-250/F-350 Lightning EV BEV	

DUCKER

BEV(FCEV) Dedicated **BEV(FCEV)/ICE** Variants **ICE-based Only**

OEM Light Truck Launch on the Forecast Period (2/2)

Among the new models between 2026 and 2029, BEV share will continuously increase, including BEV dedicated platforms and shared platforms by both BEV and ICE-based variants

	2	.026	2	027	2	028	2029	
B-Segment LTR	VinFast VF 6 BEV		Chevrolet B-SUV EV BEV	Honda B-SUV EV BEV				
	Jeep Compass BEV	Mazda CX-30 IC Only/MHEV	Ford Escape EV BEV	Genesis GV60 BEV	Toyota RAV4 BEV	Kia Sportage LWB IC Only/FHEV/PHEV	Subaru Crosstrek IC Only/PHEV	
	Ford Bronco Sport BEV/IC Only/FCEV/FHEV	Honda CR-V EV BEV	Lincoln Corsair EV BEV	Hyundai Santa Cruz IC Only	Ford Maverick BEV	Mazda CX-50 FHEV/MHEV		
C-Segment LTR	Honda HR-V (ZR-V) BEV	Nissan Rogue IC Only	Honda CR-V FHEV	Nissan C-SUV EV BEV	Honda HR-V (ZR-V) FHEV/BEV/IC Only	Jeep Wrangler MHEV/IC Only/PHEV		
			Ford Maverick FHEV/IC Only	Nissan C-Pickup EV BEV	Volkswagen Taos IC Only/MHEV			
			Honda CR-V IC Only/PFCEV	Tesla C-SUV EV BEV				
			Hyundai Tucson LWB IC Only/FHEV/PHEV	Toyota Corolla Cross IC Only/FHEV/PHEV				
	Dodge D-SUV EV BEV	Rivian R2S BEV	Genesis GV70 BEV	Nissan Pathfinder IC Only/BEV/FHEV	Lexus RZ BEV	Nissan Frontier IC Only	Ford Bronco BEV/IC Only/FHEV	Honda Pilot BEV
	Ford Mustang Mach-E BEV	Rivian R2T BEV	Lucid D-SUV EV BEV	Infiniti D-SUV EV BEV	Honda Odyssey PHEV/IC Only	Volkswagen ID.4 BEV	Cadillac LYRIQ BEV	Jeep Grand Cherokee BEV/MHEV/IC Only/PHEV
	Kia D-Pickup EV BEV	Nissan Murano FHEV	Nissan D-SUV EV BEV	Infiniti QX60 IC Only/MHEV/BEV	Honda Pilot IC Only/PHEV		Chevrolet Corvette EUV BEV	Subaru Outback IC Only
D-Segment LTR	Toyota Tacoma BEV	Toyota bZ4X BEV					Honda Odyssey BEV	Toyota bZ4X BEV
	BMW X4 BEV	Volkswagen Atlas PHEV/IC Only						
	Honda Vision S BEV	Volkswagen Atlas Cross Sport IC Only/PHEV						
	Kia EV7 BEV	Scout D-SUV EV BEV						
	BMW X5 BEV/MHEV/PHEV/IC Only/FCEV	Mercedes-Benz Sprinter BEV	Ram ProMaster BEV/FCEV/IC Only	Rivian R3S 1 BEV	GMC Yukon BEV	Jeep Gladiator BEV/IC Only/PHEV	Lexus E-SUV EV BEV	
	Ford Transit BEV/IC Only	Rivian EDV BEV	BMW X6 BEV/IC Only/PHEV	Rivian R3T 1 BEV				
	Ford E-Transit BEV	Jeep Wagoneer BEV	Acura MDX BEV/IC Only	Jeep Wagoneer BEV/MHEV/EREV				
E-Segment LTR	Kia Telluride IC Only/PHEV	Tesla Model X BEV	Mercedes-Benz GLE Coupe MHEV/PHEV/IC Only					
	Kia E-Pickup EV BEV	Tesla E-Van EV BEV						
	Mercedes-Benz GLE MHE/PHEV/IC Only	Scout E-Pickup EV BEV						
	Chevrolet Silverado IC Only	Ford F-150 Lightning EV BEV	Chevrolet Silverado HD IC Only	Chevrolet Silverado HD FCEV	Chevrolet Tahoe BEV	Chevrolet Silverado FCEV	Ford Expedition EV BEV	
F-Segment LTR	GMC Sierra IC Only	Mercedes-Benz GLS MHEV	Ram 2500/3500 EREV	GMC Sierra HD IC Only/FCEV	Chevrolet Suburban BEV	Ram 1500 FCEV	Lincoln Navigator EV BEV	
	Ford F-150 IC Only/FHEV	Edison Future EF1-S BEV	Ford F-150 BEV	Ram 1500 BEV/IC Only/MHEV/EREV	GMC Yukon XL BEV		Ford F-250/F-350 IC Only	

BEV(FCEV) Dedicated **BEV(FCEV)/ICE** Variants

DUCKER

ICE-based Only

Aluminum Content By Vehicle Segment

Light trucks are expected to have 564 pounds of average aluminum content in 2030, a comparable level to that of D-segment cars. E-segment passenger cars boast over 900 lbs. of aluminum per vehicle, thanks to new EV brand models such as the Tesla Model S and Lucid Air

DUCKER

2020 PPV	2022 PPV	2026 PPV	2030 PPV
304	-	-	-
258	218	208	209
270	268	273	281
423	475	552	569
F10	608	828	924
213	-	-	-
353	402	441	449
2020 PPV	2022 PPV	2026 PPV	2030 PPV
-	-	-	-
- 241	- 216	- 232	- 241
- 241 357	- 216 341	- 232 353	- 241 392
- 241 357 410	- 216 341 488	- 232 353 511	- 241 392 549
- 241 357 410	- 216 341 488 542	- 232 353 511 595	- 241 392 549 651
- 241 357 410 654	- 216 341 488 542 726	- 232 353 511 595 755	- 241 392 549 651 734
- 241 357 410 654 496	- 216 341 488 542 726 524	- 232 353 511 595 755 537	- 241 392 549 651 734 564
- 241 357 410 654 496 2020 PPV	- 216 341 488 542 726 524 2022 PPV	- 232 353 511 595 755 537 2026 PPV	- 241 392 549 651 734 564 2030 PPV

*E/F segments were combined in 2020 study

Material Content Evolution in North America

Aluminum share will continue to grow through 2026. As BEVs gain more share towards the end of the decade, the average vehicle curb weight is expected to continue rising, largely due to EV batteries

2022 Average Vehicle Material Weight: 4,029 lbs.

Sources: Ducker, American Chemistry Council

....

.

.

.

....

....

....

.

.

.

.

.

....

.

....

2026 Average Vehicle Material Weight: 4,134 lbs.

Rubber, coatings, textiles, fluids and lubricants and all other miscellaneous materials

Market Perspectives

2022 STUDY SUMMARY REPORT - DUCKER HOLDINGS LLC

NA Light Vehicles Production

Sources: Ducker, LMC Automotive Q4-2022, World Semiconductor Trade Statistics

Production has been negatively impacted by the COVID-19 lockdowns and the semiconductor disruptions; a slow recovery is ongoing, but it is still lingering as supply chain disruptions are multiplying and hurting production capacity; no volume correction is expected to recover from lost volumes

North America Light Vehicles Production Forecast

Million Units (light vehicles)

Industry stalled due to COVID-19 in 2020 following lockdowns and low mobility needs

- case scenario
- and the Russian invasion of Ukraine
- productions
- prices
- reduce price entry for new vehicles

2022 STUDY SUMMARY REPORT - DUCKER HOLDINGS LLC

Market is unlikely to fully return to normal production levels before 2025 in the best-

Supply chain issues are not likely to resolve soon due to economic warfare with China

The European natural gas supply situation is impacting the cost of energy on a worldwide perspective, leading to a slowdown in some energy intensive component

There is a possibility that the market will not recover the lost volumes due to high

To secure volumes, carmakers may have to invest into lower segment vehicles to

Most volume loss is absorbed by ICE-based powertrain as carmakers are ramping up EV production, creating a distortion in the market share of EVs

The economy remains strong in North America, but consumers are dominated by a fear of recession leading to an easing demand for new vehicles

NA Light Vehicle Production Share by Status/Size/Body Type

.

Due to a fundamental shift by the Detroit 3 in production mix by body type to favor larger SUVs and pickup trucks, the outlook over the next seven years is stable. BEVs, although currently aligning with larger D and E segments, will shift to C segment (inflation reduction act and price ceilings for rebates)

2022 STUDY SUMMARY REPORT - DUCKER HOLDINGS LLC

DUCKER

27

BEV – NA Light Vehicle Production Share by Status/Size/Body Type

The BEV market has been shaped by the low number of models in the past several years, creating major changes and distortions in the market structure; as OEMs are introducing more models in a diversity of size, status, and body type, the market is evolving accordingly

NA BEV LV Production by Status

NA BEV LV Production by Size

Sources: Ducker, LMC Automotive Q4-2022

....

DUCKER

NA BEV LV Production by Body Type

The Road to Sustainability

2050

- Audi: Carbon neutrality
- Ford: Carbon neutrality
- RNM: Carbon neutrality
- Toyota: 90% less CO2 emissions compared to 2010
- VW: Carbon neutrality

GM 100% Electrified

- Ford: Cut 50% GHG
- RNM: 100% EV

2050

2025

BMW: launch of new fully electric platform

2035

- GM: 30 new EVs
- Jaguar: 100% BEV
- Hyundai-Kia: 20% BEV
- Mercedes-Benz: 50% EV
- Porsche: 50% EV

OEMs are asking suppliers by to establish the carbon footprint for the material supplied

• No restriction has yet been implemented

Automotive News

passenger vehicles in 2035

NEWS

DAVID SHEPARDSON and NICHOLA GROOM

.

.

.

....

....

....

....

.

....

• BMW and Volvo have announced CO2 targets from components as part of the carbon neutrality strategy

DATA CENTER

VIDEO

California plans to ban sale of new gasoline-powered

EVENTS & AWARDS

AN SOLUTION

• VW Group is expected to follow the same path, nothing yet has been announced

Source: Ducker

Steering BEVs Towards Success

A breakthrough is required to reduce the need for materials and implement ultra fast charging

- Target is to reach over 300Wh/kg and up to 600Wh/kg on a longer term
- In the best-case scenario, first solid-state applications are 5 years ahead; most industry participants expect industrialization in 10+ years

StoreDot Says Solid-State **Batteries Are At Least 10 Years Away**

Technology Materials If one of the 4 pillars fails to meet market requirements, it will impede the volume rampup for BEVs and reduce the Low Carbon Filect maximum potential for the EV charoing Network market

45 BY

The current grid capacity is insufficient to support charging needs at peak time and requires modernization

- The US must increase electricity production by 22% (900TWh) to have enough energy to shift 25% of the US VIO to EVs
- Low carbon electricity is critical to reduce efficiently mobility emissions

Strong demand pushes costs up, decrease is not expected before 2026 due to strong demand

Battery costs went down to \$137/kWh in 2021 (\$151 in 2022 constant dollars), but are now rising as 2022 they increased back to 2019 levels

Lithium costs increased by 7x since 2020 (CNY38,500/T => CNY250,000/T)

Higher battery material costs likely to have a positive impact on al demand

Charging networks lead to range anxiety with only 53,000 stations and 140,000 connectors in the US

\$7.5B invested in EV charging infrastructure (500,000 stations by 2030)

• Charging infrastructure required investments and materials to support Level 3 charging capability

THIS CONCLUDES OUR PRESENTATION. THANK YOU.

Today's presentation was prepared by Ducker Research and Consulting/DUCKER HOLDINGS LLC. To the fullest extent permissible by applicable law, all information contained herein is for informational purposes only and is provided "AS IS". The information is provided (i) with no guaranty of accuracy, completeness, timeliness or that any defects will be corrected and (ii) without any representations, warranties or other contractual terms of any kind including, without limitation, warranties of title, merchantability or fitness for a particular purpose. Even if Ducker was advised, knew or should have known that claims or damages could arise from the use, misuse or delay of use of the information, Ducker assumes no legal liability for any direct, indirect, consequential, special, punitive or similar claims or damages. The information contained herein does not represent financial, legal, regulatory or other advice and recommendations from Ducker. Any use of the information is undertaken at your sole risk.

DUCKER

RESEARCH & CONSULTING

BANGALORE | BERLIN | DETROIT | LONDON | NEW YORK | PARIS | SHANGHAI

www.ducker.com

